
Built with Apache Forrest
http://forrest.apache.org/

IrScrutinizer documentation

Table of contents

1 Revision history.. 3

2 Introduction...3

 2.1 Background..4

 2.2 Copyright and License.. 4

 2.3 Privacy note...5

3 Overview...5

4 Installation...6

 4.1 General.. 6

 4.2 Properties...6

 4.3 Windows..6

 4.4 MacOSX.. 6

 4.5 Other systems (Linux etc)...7

5 Concepts..7

6 Analyzing a single IR Sequence or IR Signal..8

7 Adding new export formats..8

8 GUI Elements walk through...8

 8.1 The "Scrutinize signal" pane...8

 8.2 The "Scrutinize remote" pane... 9

 8.3 The "Generate" pane... 9

 8.4 The Import pane..10

 8.5 The Export pane..13

 8.6 The "Capturing HW" pane..15

 8.7 The "Sending HW" pane...16

9 Command line arguments...18

10 Questions and Answers...19

http://forrest.apache.org/
http://forrest.apache.org/

IrScrutinizer documentation

Page 2Built with Apache Forrest
http://forrest.apache.org/

 10.1 Does IrScrutinizer completely replaces IrMaster?...19

 10.2 How do I emulate the war dialer in IrScrutinizer?.. 19

 10.3 Can I use this program for conveniently controlling my favorite IR controlled device
from the sofa?.. 19

 10.4 The pane interface sucks... 19

 10.5 I did something funny, and now the program does not startup, with no visible error
messages...20

11 References... 20

http://forrest.apache.org/
http://forrest.apache.org/

IrScrutinizer documentation

Page 3Built with Apache Forrest
http://forrest.apache.org/

Note:

This document is not finished yet. In particular, there are broken links. See the release notes.
Please ask questions in the JP1-forum.

Warning:

Sending undocumented IR commands to your equipment may damage or even destroy it. By
using this program, you agree to take the responsibility for possible damages yourself, and not to
hold the author responsible.

1 Revision history

Date Description

2013-11-12 Initial version.

2013-12-01 Next unfinished version.

2 Introduction

IrScrutinizer is a powerful program for capturing, generating, analyzing, importing, and
exporting of infrared (IR) signals. For capturing and sending IR signals several different
hardware sensors and senders are supported. IR Signals can be imported not only by
capturing from one of the supported hardware sensors (among others: IrWidget, Global
Caché, and Arduino), but also from a number of different file formats (among others:
LIRC, Wave, Pronto Classic and professional, RMDU (partially), and different text
based formats; not only from files, but also from the clipboard, from URLs, and from
file hierarchies), as well as the Internet IR Databases by Global Caché and by IRDB.
Imported signals can be decoded, analyzed, edited, and plotted. A collection of IR signal
can thus be assembled and edited, and finally exported in one of the many supported
formats. In addition, the program contains the powerful IrpMaster IR-renderer, which
means that almost all IR protocols known to the Internet community can be generated.

Written in Java (with the exception of two native libraries), most of the functionality
of the program is available on every Java platform. The native libraries (DecodeIR and
RXTX) are presently available for 32- and 64-bit versions of Windows, Linux (x86 and
amd-64), and MacOsX, and can with moderate effort be compiled for other platforms.

For someone with knowledge in the problem domain of IR signals and their
parameterization, this program is believed to be simple to use. This knowledge is
assumed from the reader. Other can acquire that knowledge either from the JP1 Wiki or,
e.g., this link.

Note that screen shots are included as illustrations only; they may not depict the current
program completely accurately. They come from different versions of the program, using
different platforms (Linux and Windows), and using different "look and feels".

http://forrest.apache.org/
http://forrest.apache.org/
IrScrutinizer.releasenotes.txt
http://www.hifi-remote.com/wiki/index.php?title=Main_Page
http://www.sbprojects.com/knowledge/ir/index.php

IrScrutinizer documentation

Page 4Built with Apache Forrest
http://forrest.apache.org/

The present document is written more for completeness than for easy accessibility.
Possibly, in the future, there will be a user's manual as well as a reference manual.

Here are the current release notes.

2.1 Background

First, in 2011, I wrote an IR signal "engine" called IrpMaster. It can also be invoked
as a command line program. Then a program called IrMaster was released, which
among other things constitutes a user friendly GUI front end to IrpMaster. The present
program, IrScrutinizer, is also based on IrpMaster, and adds functionality from IrMaster,
in particular the possibility to collect IR signals, a vastly improved import and export
facility, and edit collections of IR commands. IrScrutizer almost completely replaces
IrMaster. It is planned to release a final version before the end of 2013 (slightly ironically
called version 1.0.0). No further development is planned.

2.2 Copyright and License

The program, as well as this document, is copyright by myself. My copyright does
not extend to the embedded "components" Analyze, Makehex, DecodeIR, and Jirc.
ExchangeIR was written by Graham Dixon and published under GPL3 license. Its
Analyze-function has been translated to Java by Bengt Martensson. DecodeIR was
originally written by John S. Fine, with later contributions from others. It is free software
with undetermined license. IrpMaster is using ANTLR3.4 and depends on the run time
functions of ANTLR3, which is free software with BSD license.

The "database file" IrpProtocols.ini is derived from DecodeIR.html, thus I do not claim
copyright.

The program uses JCommander by Cédric Beust to parse the command line arguments. It
is free software with Apache 2 license.

Icons by Everaldo Coelho from the Crystal project are used; these are released under the
LGPL license.

The Windows installer was built with Inno Setup, which is free software by Jordan
Russel. To modify the user's path in Windows, the Inno extension modpath by Jared
Breland, distributed under the GNU Lesser General Public License (LGPL), version 3.

Serial communication is handled by the RXTX library, licensed under the LGPL v 2.1
license.

JSON handling is implemented using the "fast and minimal JSON parser for Java" by
Ralf Sernberg, licensed under the Eclipse Eclipse Public License Version 1.0.

LIRC (Linux Infrared Remote Control) is according to its web site copyright 1999
by Karsten Scheibler and Christoph Bartelmus (with contribution of may others), and
is licensed under GPL2. The parts used here have been translated to Java by myself,
available here.

http://forrest.apache.org/
http://forrest.apache.org/
IrScrutinizer.releasenotes.txt
IrpMaster.html
IrMaster.html
http://www.gnu.org/licenses/gpl.html
http://www.antlr.org/license.html
http://www.hifi-remote.com/wiki/index.php?title=DecodeIR
http://jcommander.org
https://github.com/cbeust/jcommander/blob/master/license.txt
http://www.everaldo.com
http://www.gnu.org/licenses/lgpl.html
http://www.jrsoftware.org/isinfo.php
http://www.jrsoftware.org/files/is/license.txt
http://www.jrsoftware.org
http://www.jrsoftware.org
http://legroom.net/software/modpath
http://www.legroom.net/
http://www.legroom.net/
http://www.gnu.org/licenses/lgpl.html
http://rxtx.qbang.org/wiki/index.php/Main_Page
http://users.frii.com/jarvi/rxtx/license.html
http://users.frii.com/jarvi/rxtx/license.html
http://eclipsesource.com/blogs/2013/04/18/minimal-json-parser-for-java/
http://www.eclipse.org/legal/epl-v10.html
http://www.lirc.org
Jirc.html

IrScrutinizer documentation

Page 5Built with Apache Forrest
http://forrest.apache.org/

Tonto was written by Stewart Allen, and is licensed under the "Artistic License".

The program contains icons from Global Caché, Dangerous Prototypes, Arduino, and
IrTrans. These are used exclusively in the context of these firms, and only used to
illustrate their products. The icons for JP1 and LIRC are also exclusively used to illustrate
themselves.

The program and its documentation are licensed under the GNU General Public License
version 3, making everyone free to use, study, improve, etc., under certain conditions.
File formats, their description in human- or machine-readable form (DTDs, XML
Schemas), are placed in the public domain.

2.3 Privacy note

Some functions (Help -> Project Home page, Help -> IRP Notation Spec, Help ->
Protocol Specs, Tools -> Check for updates) access the Internet using standard http calls.
This causes the originating machine's IP-address, time and date, the used browser, and
possibly other information to be stored on the called server. If this is a concern for you,
please do not use this (non-critical) functionality (or block your computer's Internet
access).

3 Overview

Next a high-level view of the different use cases will be given.

Analyze ("Scrutinize") individual IR Signal/Ir Sequence
An IrSignal or IrSequence can be captured from connected hardware, or imported
from files in different formats, the clipboard, or from Internet databases. The
IrSequence can be broken into a beginning-, repeat-, and ending sequence, and
decoded, analyzed, and plotted. It can be exported in different formats, or sent to
different transmitting hardware.
Analyze/edit/compose/export collections of IR signals (""remotes")
A collection of commands can be assembled either from individual IR signals (as
above), captured several at a time, or imported from files in different formats, the
clipboard, or from Internet databases. The collection and the individual commands
can be edited as in a spreadsheet. It can be exported in a number of different formats.
Generate IR Signals from known protocols
IR Signals can be generated from the Internet's largest protocol data base, containing
over 100 protocol. Necessary protocol parameter values are to be entered. Thus
generated signals can be analyzed as single signals, incorporated into remotes, or
exported to files — also from e.g. intervals of parameters.

http://forrest.apache.org/
http://forrest.apache.org/
Tonto-license.txt
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
Glossary.html#IrSignal
Glossary.html#IrSequence
Glossary.html#Capturing
Glossary.html#StartSequence
Glossary.html#RepeatSequence
Glossary.html#EndingSequence
Glossary.html#Decode
Glossary.html#Remote
Glossary.html#IrProtocol

IrScrutinizer documentation

Page 6Built with Apache Forrest
http://forrest.apache.org/

4 Installation

4.1 General

IrScrutinizer, and all but two of its third-party additions, are written in Java, which means
that it should run on every computer with a modern Java installed; Windows, Linux,
Macintosh, etc. Java 1.6 or later is required. The two exception are DecodeIR and the
native part of RXTX, which are written in C++ and C respectively, and invoked as shared
library (.dll in Windows, .so in Linux, etc). If DecodeIR or RXTX are not available
on your platform it is not a major problem, as IrScrutinizer will work fine without it; just
the DecodeIR-related functions or the serial hardware access will be unavailable.

There is unfortunately no good make install or such in the source distribution, so
also source code distribution users are recommended to install the binary distribution.
Also, all necessary third-party components are included in the binary distribution.

Both under Windows as well as under other operating systems, IrScrutinizer behave
civilized, in that they do not write in the installation directory after the initial installation.
In both cases (in contrast to the source distribution), the distribution contains everything
needed including third party libraries.

4.2 Properties

Under Windows, the properties are stored in %LOCALAPPDATA%\IrScrutinizer
\IrScrutinizer.properties.xml using Windows Vista and later (on
my Windows 7 system, this is %HOME%\AppData\Local\IrScrutinizer
\IrScrutinizer.properties.xml), otherwise in %APPDATA%
\IrScrutinizer\IrScrutinizer.properties.xml. Using other operating
systems, it is stored under $HOME/.IrScrutinizer.properties.xml. It is not
deleted by un-install. (If weird problems appear when updating, try deleting this file.)

4.3 Windows

Download the Window setup file, save, and double click. Select any installation directory
you like; suggested is C:\Program Files\IrScrutinizer, unless you are
installing from an account without administrator rights. Unless reason to do so, create the
start menu folder, and the desktop icon. Administrator rights are not needed, unless are
installing in a directory like Program Files. IrScrutinizer can now be started from
Start -> IrScrutinizer -> IrScrutinizer, or from the desktop icon.

To un-install, select the un-install option from the Start menu. Very pedantic people may
like to delete the properties file too, see above.

4.4 MacOSX

Download and double click the binary distribution. Unpack it to a directory of your
choice, e.g. on the desktop. Just double clicking the file IrScrutinizer.jar should now

http://forrest.apache.org/
http://forrest.apache.org/
http://www.harctoolbox.org/downloads/IrScrutinizer.exe
downloads/IrScrutinizer-bin.zip

IrScrutinizer documentation

Page 7Built with Apache Forrest
http://forrest.apache.org/

start the program. Otherwise, try the "Other systems" instructions and adapt the wrapper
irscrutinizer.sh.

4.5 Other systems (Linux etc)

For some reason, double clicking an executable jar file in my Gnome installation does
not start the program, but starts a browser for the jar file (which is really a form of Zip-
Archive). Instead:

Create an installation directory (suggestion; /usr/local/irscrutinizer),
and unpack the current binary distribution therein. Examine the wrapper
irscrutinizer.sh, and, if desired, make desired changes to it with your favorite
text editor. Then make a symbolic links from a directory in the path (suggestion; /
usr/local/bin to the newly installed irscrutinizer.sh, using the name
irscrutinizer. Example (using the suggested directories)

cd /usr/local/bin
ln -s ../irscrutinizer/irscrutinizer.sh irscrutinizer

(su (or sudo) may be necessary to install in the desired locations.)

To un-install, just delete the files. Very pedantic people may like to delete the properties
file too, see above.

5 Concepts

For anyone familiar with the problem domain, this program is believed to be intuitive and
easy to use. Almost all user interface elements have tool-help texts. Different panes have
their own pop-up help. In what follows, we will not attempt to explain every detail of the
user interface, but rather concentrate on the concepts. Furthermore, it is possible that new
elements and functionality has been implemented since the documentation was written.

This program does not disturb the user with a number of annoying, often modal, pop ups,
but directs errors, warnings, and status outputs to the console window, taking up the lower
third of the main window. This window is re-sizeable. There is a context menu for the
console, accessible by pressing the right mouse button in it.

In the upper row, there are four pull-down menus, named File, Edit, Actions, Options,
Tools, and Help. Their usage is believed to be mainly self explanatory, with some the
exceptions.

Options to the program are in general found in the Options menu, or its subordinate
menus. Some parameters for particular export formats are found in the sub-panes of the
"Export" pane. Also the hardware configuring panes contain user parameters.

The main window is composed of seven sub panes denoted by "Scrutinize signal" (for
processing single signal), "Scrutinize remote" (for collecting several signals to one
"remote"), "Generate" (generates IR signal from protocol name and parameters),

http://forrest.apache.org/
http://forrest.apache.org/
downloads/IrScrutinizer-bin.zip
http://www.bengt-martensson.de/misc/modal.html

IrScrutinizer documentation

Page 8Built with Apache Forrest
http://forrest.apache.org/

"Import", "Export", "Capturing Hardware", and "Sending Hardware" respectively. These
panels will be discussed in Section GUI Elements walk through

6 Analyzing a single IR Sequence or IR Signal

The pane "Scrutinize Signal" is devoted to the analysis of one single IR sequence.

To capture IR Sequences from a hardware sensor, first set it up and open it, see Section
Capturing Hardware. An IR Sequence is captured by pressing the "Capture" button,
and sending an IR signal to the selected hardware. Note that the hardware captures an
IR Sequence, not an IR Signal. It consists of an (sometimes empty) start sequence, an
unknown number of repeat sequences, and sometimes an ending sequence.

7 Adding new export formats

TODO

8 GUI Elements walk through

8.1 The "Scrutinize signal" pane

This panel is devoted to the analysis of a single IR signal or IR sequence. A (single)
signal is either read from hardware using the "Capture" button (requires that the capturing
hardware has been set on the "Capturing Hardware" pane), imported from a file (using
the context menu in the data window, or through File -> Import -> Import as single
sequence), or pasted from the clipboard. Also, some other panes can transfer data to
this pane. For text import, the signal can be in either Pronto CCF format, raw format
(indicated by a leading "+"-sign), or in the UEI learned format. The signal is printed in
the data window, in the preferred text format, which can be selected from the options
menu. The text representation may be edited (assuming sufficient knowledge!), after
which the edited signal is analyzed and plotted again by pressing the "Scrutinize" button.
The signal may be sent to the sending hardware by pressing the "Transmit" button.

Using context menus, the result can be sent to the clipboard or saved to a file.

The plot can be zoomed by pressing the left mouse button and dragging. Printing and
exported as graph is presently not implemented.

The menu entry Actions -> Enter test signal (or its accelerator, the F9 key) enters a test
signal.

In rare cases, transforming the signal between different formats may introduce some
rounding errors causing decoding to fail.

http://forrest.apache.org/
http://forrest.apache.org/
Glossary.html#IrSequence
Glossary.html#IrSignal
Glossary.html#StartSequence
Glossary.html#RepeatSequence
Glossary.html#EndingSequence
Glossary.html#IrSignal
Glossary.html#IrSequence

IrScrutinizer documentation

Page 9Built with Apache Forrest
http://forrest.apache.org/

8.2 The "Scrutinize remote" pane

This panel is devoted to the capturing/import/editing of a collection of IR signals, called
"a remote" in the sequel. The panel contains two sub-panels: for parametric signals and
for non-parametric, "raw", signals.

A "parametric" signal is determined by its protocol name, and the values of the protocol's
parameters. A "raw" signal is determined by its timing pattern, and its modulation
frequency. It may have one or many decodes, or none. Nevertheless, by definition, a raw
signal is determined by its timing, not the decodes.

In both cases, the sub panes consists of tables with a number of columns. Every signal
takes up a row in the table. The content of the individual cells (with the exception of its
number and date) can be individually edited, like in a spreadsheet program.

In both tables, the right mouse button opens a context menu containing a number of
ways to manipulate the table, its view, or the data contained therein. By enabling the row
selector, the rows can be sorted along any of the present columns.

To capture a number of IR signals, first configure the hardware using the capturing
hardware pane. Next press the Capture button. The program will now run the capturing
in a separate thread, so the user just have to press the buttons of the remote. The signals
will be received, interpreted, decoded, and entered on subsequent lines in the selected
table (raw or parameterized). The capture thread will continue until the captured button
is pressed again. (Note that this is completely different from the capture button on the
"Scrutinize signal" panel.) The user may mix captures with other activities, like entering
information (name, comments,...) in the table.

The export button exports the content of the currently selected table (raw or
parameterized) according to the currently selected export format.

The menu entry Actions -> Enter test signal (or its accelerator, the F9 key) enters a test
signal, either as parametric signal, or as a raw signal.

8.3 The "Generate" pane

In the upper part of this pane, an IR protocol is selected, identified by name, and the
parameters D ("device", in almost all protocols), S ("sub-device", not in all protocols),
F ("function", also called command number or OBC, present in almost all protocols),
as well as T, "toggle" (in general 0 or 1, only in a few protocols). These number can be
entered as decimal numbers, or, by prepending "0x", as hexadecimal numbers.

By pressing "Generate", the signal is computed, and the middle window is filled with a
textual representation, in the form selected by Options -> Output Text Format.

The Export button initiates an export to a file format selected by the Export pane. The
three lower buttons transfer the signal(s) to the scrutinize signal panel, the raw remote
table, or the parameterized panel.

http://forrest.apache.org/
http://forrest.apache.org/
Glossary.html#ParametricIRSignal
Glossary.html#RawIRSignal
Glossary.html#toggle

IrScrutinizer documentation

Page 10Built with Apache Forrest
http://forrest.apache.org/

8.3.1 Accessing a number of different parameter values

For the export and the transfer to the "scrutinize remote" tables, not only a single
parameter value can be selected, but whole sets. The complete syntax and semantics
is given in the IrpMaster documentation, we here just mention that e.g. 12:34 means
all numbers between 12 and 34, and * denotes all possible values (as defined by the
protocol's IRP notation).

8.4 The Import pane

The import pane allows for selective import of collection of IR commands. Both Internet
data bases and file formats are supported. Import can take place from local files or even
file hierarchies, from the clipboard, or from Internet URLs.

There are a number of elements common to most of the sub-panes, so these will be
described next.

For file/URL based imports, there is a text field, named File or File/URL. For the latter
case, an URL (like http://lirc.sourceforge.net/remotes/yamaha/
RX-V995 can be entered, for subsequent import without downloading to a local disc.
By pressing the "..."-Button, a file selector allows the selection of a local file. For files
and URLs, the "Edit/Browse" button allows to examine the selected file/URL with the
operating system's standard command.

When pressing one of the "Load", "Load File/URL", or "Load from clipboard" button,
the selected information is downloaded, and presented in the format of an expandable
tree. By placing the mouse cursor over a command, additional information, like decode,
is presented. A single command can be selected by mouse click, a sequence of adjacent
commands by shift-click, a subset of not necessarily adjacent commands be selected
by Ctrl-click, as usual from most GUIs. A single selected command can be transferred
to the "Scrutinize signal" pane by pressing "Import signal". The "Import all" ("Import
selection") button transfers all commands (the selected commands) to the "Scrutinize
remote" pane, sub-pane "Parametric remote" (without overwriting already present
commands), while the buttons "Import all/raw" and "Import selected/raw" transfer to the
sub-pane "Raw remote".

The key "Transmit selected" transmits the (single) selected signal to the selected sending
hardware.

8.4.1 Global Caché Database

Global Caché maintains a data base of IR signals, made available free of charge.
"Contains over 100,000 Infrared codes for over 2,000 different remotes from over 500
manufacturers". To use from IrScrutinizer, an API Key has be be retrieved. This can be
done from a Facebook, Google, or Yahoo account. After pressing the "APIKey" button,
the API key is entered in the pop-up window. It is subsequently saved to the program's

http://forrest.apache.org/
http://forrest.apache.org/
IrpMaster.html#Iterating+over+input+parameter+ranges
Glossary.html#IRPNotation
Glossary.html#Command
Glossary.html#Decode
http://irdatabase.globalcache.com/

IrScrutinizer documentation

Page 11Built with Apache Forrest
http://forrest.apache.org/

properties. To use, select, in order, a manufacturer, a device type, and a setup code, the
latter possibly by trial-and-error.

8.4.2 The IRDB Database

IRDB is "one of the largest crowd-sourced, manufacturer-independent databases
of infrared remote control codes on the web, and aspiring to become the most
comprehensive and most accurate one."

To use, select, in order, a manufacturer, a device type, and a protocol/parameter
combination, the latter possibly by trial-and-error.

Pressing the "Load all" button transfers all present protocol/parameters combinations to
the tree.

Due to the somewhat limited API of the site, performance problems exists for
manufacturers with many devices. Also, the list of devices is truncated after 100 html
pages.

8.4.3 Girr (the native format of IrScrutinizer)

The Girr format is the native format of IrScrutinizer.

8.4.4 LIRC

The LIRC import feature is based upon Jirc, which is basically LIRC translated into Java.
The LIRC importer can even import a file system hierarchy by selecting the top directory
as File/URL. (Importing the entire lirc.org database with over 100000 commands takes
around 1 minute and 1GB of memory.)

8.4.5 RemoteMaster

The JP1 community has a large data base of parametric IR commands. IrScrutinizer has
support for importing RMDU files for RemoteMaster. Unfortunately, the signals are
stored as parameters for so-called executors, with sometimes different parameterization
("hex", "efc") than the IRP protocols. Translating these files to one of the known
protocol/parameter format is nothing but straightforward. It uses protocol information
contained in protocols.ini. IrScrutinizer reads this file, and can do some computations, for
example on NEC1 protocols, but not on all protocols.

For signals without recognized protocol name, importing as raw signals, or to "Scrutinize
signal", is not possible. However, they can always be imported as parametric signals,
possibly for manual edit.

http://forrest.apache.org/
http://forrest.apache.org/
Glossary.html#DeviceType
Glossary.html#setupCode
http://irdb.tk
Glossary.html#DeviceType
Glossary.html#IrProtocol
Glossary.html#Girr
Glossary.html#LIRC
Jirc.html
Glossary.html#Java
Glossary.html#JP1

IrScrutinizer documentation

Page 12Built with Apache Forrest
http://forrest.apache.org/

8.4.6 Pronto Classic (CCF format)

Many Pronto CCF files are available in Internet, in particular by Remote Central.
IrScrutinizer can read in these files to its import tree, even preserving the Pronto
"devices" as nodes in the tree.

8.4.7 Pronto Prof. (XCF format)

Pronto Professional XCF files are found for example at Remote Central. IrScrutinizer can
read in these files to its import tree, even preserving the Pronto "devices" as nodes in the
tree.

8.4.8 ICT IrScope format

The ICT format, introduced by Kevin Timmerman's IrScope, contains the timing pattern,
the modulation frequency, and optionally a name ("note") of one or many IR signals.

8.4.9 Text format

In the Internet, there are a lot of information in table-like formats, like Excel, describing
the IR commands of certain devices. IrScrutinizer has some possibilities of importing
these — after exporting them to a text format, like tab separated values (tsv) or comma
separated values.

8.4.9.1 Raw

The sub-pane allows for the parsing of text files separated by a certain characters,
like commas, semicolons, or tabs. The separating characters is selected in the "Field
separator" combo box. The column to be used as name is entered in the "Name col."
combo box, while the data to be interpreted either as raw data or CCF format, is entered
in the "Raw signal col.". If the "... and subsequent columns" is selected, all subsequent
columns are added to the data.

8.4.9.2 Raw, line-based

This pane tries to interpret a line-based file as a number of named IR commands, using
heuristics.

8.4.9.3 Parameterized

The sub-pane allows for the parsing of text files separated by a certain characters,
like commas, semicolons, or tabs. The separating characters is selected in the "Field
separator" combo box. The column to be used as name is entered in the "Name col."
combo box, while protocol name and the parameters D, S, and F are entered in their
respective combo boxes. They are parsed in the number base selected.

http://forrest.apache.org/
http://forrest.apache.org/
Glossary.html#ccfFileFormat
http://files.remotecentral.com/pronto/index.html
Glossary.html#xcfFileFormat
http://files.remotecentral.com/prontopro/index.html

IrScrutinizer documentation

Page 13Built with Apache Forrest
http://forrest.apache.org/

8.4.10 Wave

This pane imports and analyzes wave files, considered to represent IR signals. The
outcome of the analysis (sample frequency, sample size, the number of channels, and in
the case of two channels, the number of sample times the left and right channels are in
phase or anti-phase) is printed to the console.

8.5 The Export pane

Using the export pane, export files can be generated, allowing other programs to use
the computed results. Single signals (from the "Scrutinize signal" pane), collections of
signals (from the "Scrutinize remote" pane), or generated signals can be exported. Exports
can be generated in a number of different formats. Some (Girr (=XML) and text) can
contain both the Pronto format and the "raw" format (timings in microseconds, positive
for pulses, negative for gaps), as well as other formats. These formats, together with
Wave, LIRC, and Pronto Classic, are built-in in the program. However, it is possible
to define new export formats by extending a configuration file, see Adding new export
formats. The formats are, at the time of this writing:

Girr
The program's native format, based on XML. Very flexible and extensible. Can
contain information like the raw format, CCF format, UEI learned format, and the
Global Caché sendir format. Documentation.
Text
The text format is essentially the Girr format stripped of the XML markup
information.
Wave
See the article Wave files for IR sequences.
LIRC
The LIRC-exports are in lirc.conf-format using the raw LIRC format. They can be
concatenated together and used as the LIRC server data base. Can also be used with
WinLirc.
Pronto Classic
This format generates a CCF configuration file to be downloaded in a Pronto, or
opened by a ProntoEdit program.
IrTrans
This export format generates .rem files for the IrTrans system, using its CCF format.
Lintronic
Simple text protocol for describing a single IrSequence.
Spreadsheet
Simple tab separated value export format for importing in a spreadsheet program.
RM Functions
Variant of the Spreadsheet format, this format is intended to be pasted directly into
the "Functions" table of RemoteMaster.

http://forrest.apache.org/
http://forrest.apache.org/
Girr.html
wave.html
http://winlirc.sourceforge.net/
Glossary.html#ccfFileFormat
Glossary.html#IrTrans
Glossary.html#IrSeqeunce
Glossary.html
Glossary.html#RemoteMaster

IrScrutinizer documentation

Page 14Built with Apache Forrest
http://forrest.apache.org/

C
Intended mostly as an example of generating C code, cf. this article.
TV-B-Gone
Variant of the C format, this format generates C code for the TV-B-Gone.

Export file names are either user selected from a file selector, or, if "Automatic file
names" has been selected, automatically generated.

The export is performed by pressing the "Export" button. The "..."-marked button allows
for manually selecting the export directory. It is recommended to create a new, empty
directory for the exports. The just-created export file can be immediately inspected
by pressing the "Open last file"-button, which will open it in the "standard way" of
the used operating system. (Also available on the actions menu.) The "Open" button
similarly opens the operating systems standard directory browser (Windows Explorer,
Konquistador, Nautilus,...) on the export directory.

Some export formats (presently Wave and Lintronic) export an IR sequence rather than
an IR signal (consisting of an intro sequence, an repetition sequence (to be included 0
or more times), and an (most often empty) ending sequence). Using these formats, the
number of repetition sequences to include can be selected.

Some export formats have some more parameters, configured in sub panes. These will be
discussed next.

8.5.1 The Girr sub-pane

A style sheet can be selected to be linked in into the exported Girr file. The type of style
file (presently xslt and css) can also be selected.

"Fat form raw" can be selected; this means that the raw signals are not given as a text
string of alternating positive and negative numbers, but the individual flashes and gaps
are enclosed into own XML elements. This can be advantageous if generating XML
mainly for the purpose of transforming to other formats.

8.5.2 The Wave sub-pane

Parameters for the generated Wave export (except for the number of repeats) can be
selected here. For their meaning, see the article Wave files for IR sequences.

8.5.3 The sendir sub-pane

The Global Caché sendir format requires a module number and a connector number.
Also, there is a compressed format, that can be enabled by selecting the compressed
check-box.

8.5.4 The Pronto Classic sub-pane

A Pronto Classic export consists of a CCF file with the exported signals associated to
dummy buttons. The Pronto (Classic) model for which the export is designed is entered in

http://forrest.apache.org/
http://forrest.apache.org/
transforming-xml-export.html
http://en.wikipedia.org/wiki/TV-B-Gone
Glossary.html#IrSequence
Glossary.html#IrSignal
wave.html
Glossary.html#ccfFileFormat

IrScrutinizer documentation

Page 15Built with Apache Forrest
http://forrest.apache.org/

the combo box. Screen size of the Pronto is normally inferred from the model, but can be
changed here. The button size of the generated buttons is also entered here.

8.6 The "Capturing HW" pane

The sub-panes of this pane allow for the configuration of capturing hardware. Selecting
a sub-pane also selects the associated hardware, if possible. The hardware can also be
selected from the tool bar, Options -> Capturing hardware.

Unfortunately, by e.g. selecting non-existing hardware or such, there is a possibility to
"hang" the program.

After configuring and opening the capturing hardware, the "Test" button can be used for
testing the configuration without switching pane.

Selected ports are stored in the properties, thereby remembered between sessions. So, for
future sessions, only opening the preferred device is necessary.

8.6.1 IrWidget

Plug the IrWidget it into the computer. Check that the operating system has assigned a
port to it, and note which one it is. On Windows: open the device manager, and check
that there is one "USB Serial Port" under Ports. Note the port number (e.g. COM8). On a
Linux system, it likely shows up as a device like /dev/ttyUSB0. If the port does not
show up, a suitable driver needs to be installed. If the correct port is already visible in
the combo box, just press "Open". Otherwise, press "Refresh", which makes the program
determine the available serial ports. Select the correct one. Press "Open". which should
now remain "pressed". The port cam be closed again by a repeated press, but there is not
much reason to do so, unless another capturing hardware should be used, or the IrWidget
should be used from another program.

8.6.2 Global Caché capture

IrScrutinizer automatically detects alive Global Caché units in the local area network,
using the AMX Beacon. However, this may take up to 60 seconds, and is not
implemented in very old firmware. Using the "Add" button, the IP address/name of older
units can be entered manually.

The "Browse" button points the browser to the selected unit.

The reported type and firmware version serves to verify that the communication is
working.

8.6.3 LIRC Mode2

mode2 is a program from the LIRC distribution, that prints timing information in a
simple text format to its standard-out. In theory, any program that prints information in
that format can be used. The command line for the program with possible parameters is to

http://forrest.apache.org/
http://forrest.apache.org/
Glossary.html#AMXBeacon

IrScrutinizer documentation

Page 16Built with Apache Forrest
http://forrest.apache.org/

be entered as command. With the Start button, a sub-process is started, running the given
command line. The "Stop" button stops the sub-process — although sometimes this may
not stop the started program.

Has been tested only on Linux, should however work on all systems.

8.6.4 Arduino

To use the Arduino with TSOP-like demodulating receiver for IR capture, the sketch
scrutinize_receiver.ino needs to be loaded to it, possibly after adjusting the
GPIO pin of the receiver.

After connecting the Arduino to a real or virtual serial port, select the port in the combo
box, pressing "Refresh" if necessary. "Open" the port thereafter.

At least on Linux, the ACMX port may be finicky. Sometimes disconnecting and
reconnecting the device may help.

8.6.5 IrToy

After connecting the IrToy to an USB port, select the virtual serial port in the combo box,
pressing "Refresh" if necessary. "Open" the port thereafter.

At least on Linux, the ACMX port may be finicky. Sometimes disconnecting and
reconnecting the device may help.

8.7 The "Sending HW" pane

The sub-panes of this pane allows for the selection and configuration of the deployed IR
sending hardware.

8.7.1 The "Global Caché" pane.

IrScrutinizer automatically detects alive Global Caché units in the local area network,
using the AMX Beacon. However, this may take up to 60 seconds, and is not
implemented in very old firmware. Using the "Add" button, the IP address/name of older
units can be entered manually.

The "Browse" button points the browser to the selected unit.

The reported type and firmware version serves to verify that the communication is
working.

"Stop IR"-Button allows the interruption of ongoing transmission, possibly initiated from
another source.

The user can select one of the thus available Global Caché units, together with IR-module
and IR-port (see the Global Caché API specification for the exact meaning of these
terms).

http://forrest.apache.org/
http://forrest.apache.org/
Glossary.html#AMXBeacon
http://www.globalcache.com/files/docs/API-GC-100.pdf

IrScrutinizer documentation

Page 17Built with Apache Forrest
http://forrest.apache.org/

8.7.2 The "LIRC" pane

To be fully usable for IrScrutinizer, the LIRC server has to be extended to be able
to cope with CCF signal not residing in the local data base, but sent from a client
like IrScrutinizer, thus mimicking the function of e.g. a Global Caché. The needed
modification ("patch") is in detail described here. However, even without this patch, the
configuration page can be used to send the predefined commands (i.e. residing it its data
base lirc.conf). It can be considered as a GUI version of the irsend command.

The LIRC server needs to be started in network listening mode with the -l or --
listen option. Default TCP port is 8765.

After entering IP-Address or name, and port (stay with 8765 unless a reason to do
otherwise), press the "Read" button. This will query the LIRC server for its version (to
replace the grayed out "<unknown>" of the virgin IrScrutinizer), and its known remotes
and their commands. Thus, the "Remote" and "Command" combo boxes should now be
selectable. After selecting a remote and one of its command, it can be sent to the LIRC
server by pressing the "Send" button. If (and only if) the LIRC server has the above
described patch applied, transmitting signals to "LIRC" now works.

Due to LIRC's peculiar form of API stop command, the "Stop IR" command presently
does not work. See this thread in the LIRC mailing list for a background.

8.7.3 The "IRTrans" pane

The configuration of IRTrans is similar to LIRC, so it will be described more briefly.

Enter IP name or -address and select an IR port (default "intern"). If the Ethernet IRTrans
contains an "IR Database" (which is a slightly misleading term for an internal flash
memory, that can be filled by the user), its commands can be sent from this pane. By
pressing the "Read" button, the known remotes and commands are loaded, and the
version of the IRTrans displayed. The selected command can now be sent by the "Send"
button. (However, this functionality is otherwise not used by IrScrutinizer.) Selecting
"IRTrans" on the "Analyze" and "War dialer" pane should now work. The IRTrans
module is then accessed using the UDP text mode.

8.7.4 The "IrToy" Pane

Using this pane, the IrToy (version 2) can be used to transmit IR signals.

8.7.5 The "Arduino" Pane

Using this pane, an Arduino equipped with a suitable IR Led can be used to transmit
IR signals. First however, the sketch scrutinize_sender.ino from the arduino
subdirectory has to be downloaded to the Arduino, possibly after adapting it.

http://forrest.apache.org/
http://forrest.apache.org/
http://www.harctoolbox.org/lirc_ccf.xml
http://www.lirc.org/html/irsend.html
http://sourceforge.net/mailarchive/forum.php?thread_name=461617A4.4000404%40bengt-martensson.de&forum_name=lirc-list

IrScrutinizer documentation

Page 18Built with Apache Forrest
http://forrest.apache.org/

8.7.6 The "Audio" Pane

As additional hardware device, IrScrutinizer can generate wave files, that can be used
to control IR-LEDs. This technique has been described many times in the Internet the
last few years, see for example this page within the LIRC project. The hardware consists
of a pair of anti-parallel IR-LEDs, preferably in series with a resistor. Theoretically,
this corresponds to a full wave rectification of a sine wave. Taking advantage of the
fact that the LEDs are conducting only for a the time when the forward voltage exceeds
a certain threshold, it is easy to see that this will generate an on/off signal with the
double frequency of the original sine wave. (See the first picture in the LIRC article for a
picture.) Thus, a IR carrier of 38kHz (which is fairly typical) can be generated through a
19kHz audio signal, which is (as opposed to 38kHz) within the realm of medium quality
sound equipment, for example using mobile devices.

IrScrutinizer can generate these audio signals as wave files, which can be exported
from the export pane, or sent to the local computers sound card. There are some settings
available: Sample frequency (44100, 48000, 96000, 192000Hz), sample size (8 or 16 bits)
can be selected. Also "stereo" files can be generated by selecting the number of channels
to be 2. The use of this feature is somewhat limited: it just generates another channel
in opposite phase to the first one, for hooking up the IR LEDs to the difference signal
between the left and the right channel. This will buy you double amplitude (6 dB) at the
cost of doubling the file sizes. If the possibility exists, it is better to turn up the volume
instead.

Most of "our" IR sequences ends with a period of silence almost for the half of the total
duration. By selecting the "Omit trailing gap"-option, this trailing gap is left out of the
generated data – it is just silence anyhow. This is probably a good choice (almost) always.

Note that when listening to music, higher sample rates, wider sample sizes, and more
channels sound better (in general). However, generating "audio" for IR-LEDs is a
completely different use case. The recommended settings are: 48000kHz, 8bit, 1 channel,
omit trailing gap.

8.7.7 The "General Serial Port" Pane

This pane contains the controls for sending a signal in a general format to one of the serial
ports available on the system.

9 Command line arguments

Normal usage is just to double click on the jar-file, or possibly on some wrapper invoking
that jar file. However, there are some command line arguments that can be useful either
if invoking from the command line, or in writing wrappers, or when configuring custom
commands in Windows.

The options --version and --help work as they are expected to work in the GNU
coding standards for command line interfaces. Use the --help-command to see the

http://forrest.apache.org/
http://forrest.apache.org/
http://lirc.org/html/audio.html
http://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html#Command_002dLine-Interfaces
http://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html#Command_002dLine-Interfaces

IrScrutinizer documentation

Page 19Built with Apache Forrest
http://forrest.apache.org/

complete list of command line parameters. The -v/--verbose option set the verbose
flag, causing commands like sending to IR hardware printing some messages in the
console.

For automating tasks, or for integrating in build processes or Makefiles or the like, it
is probably a better idea to use IrpMaster instead, which has a reasonably complete
command line interface.

The program delivers well defined and sensible exit codes.

10 Questions and Answers

10.1 Does IrScrutinizer completely replaces IrMaster?

Almost. Using MakeHex as renderer (or more correctly, its Java version) instead of
IrpMaster is not implemented. (The practical usage of this feature is probably very
limited, and IrMaster is still available, should it ever be needed.) The "war dialer" is also
not implemented, but see next question. For the wave export, some rarely used options
(the possibility to select big-endian format (for 16-bit samples), the possibility not to half
the carrier frequency, and the possibility to select sine (instead of square) for modulation)
have been removed. Finally, there is some stuff that simply works differently, like the
export function.

10.2 How do I emulate the war dialer in IrScrutinizer?

Use "Scrutinize remote" -> Parametric Remote. Fill in the table with signals to be tested,
either using the pop-up button (right mouse in the table) Advanced -> Add missing F's, or
from the Generate pane, using suitable parameter intervals (see TODO), and transfer them
using the "To parametric remote" button. Then test the candidate signals one at a time by
transmit-ting them, using suitable sending hardware. The comment field, or the "verified"
check-box, can be used for note taking.

A "war dialer" like in IrMaster may be implemented in a later version.

10.3 Can I use this program for conveniently controlling my favorite IR controlled
device from the sofa?

No, the program is not meant for that. While you definitely can assemble a "remote"
on the "scrutinize remote" panel, and transmit the different commands with mouse
commands (appropriate hardware assumed), the program is intended for developing codes
for other deployment solutions.

10.4 The pane interface sucks.

Yes. There are several use cases when the user would like to see several "panes"
simultaneously. Also, it should be possible to have several windows of the same sort (like
the "scrutinize signal") simultaneously. Replacing the top level panes with something

http://forrest.apache.org/
http://forrest.apache.org/
IrpMaster.html#Command+line+usage
IrMaster.html#The+"IR+Protocols"+pane
IrMaster.html#The+"War+Dialer"+pane

IrScrutinizer documentation

Page 20Built with Apache Forrest
http://forrest.apache.org/

"Eclipse-like" (sub-windows that can be rearranged, resized, moved, iconized) is on my
wish list.

10.5 I did something funny, and now the program does not startup, with no visible
error messages.

Try deleting (or renaming) the properties file. If that does not help, try starting the
program from the command line, which may leave hopefully understandable error
message on the console.

11 References

1. IrpMaster. Also a GPL3-project by myself. Much harder to read than the present
document :-). See also this discussion thread in the JP1 forum.

2. IpMaster. Also a GPL3-project by myself. The precessor of the this program. See also
this discussion thread in the JP1 forum.

3. The Harctoolbox project, also a GPL3-project by myself.
4. DecodeIR. This shared library tries to identify protocol name and parameters of an

IR signal in raw form. Thus, it is in a sense, it implements the "inverse mapping" of
IrpMaster.

5. GlobalCaché, a manufacturer of Ethernet connected IR hardware. Note that I have
only tried with the GC-100 series, but the IR sending models of theiTach family are
believed to work too. (Feel free to send me one :-).)

6. IRTrans, another manufacturer of Ethernet connected IR-hardware. The "IRTrans
Ethernet" module, preferably with "IRDB Option" (internal flash memory), is directly
supported by the current software.

7. LIRC, Linux InfraRed Control This project contain drivers for almost everything IR-
related. The present project is able to use a modified LIRC-server for transmitting IR
signals.

http://forrest.apache.org/
http://forrest.apache.org/
Glossary.html#Properties
IrpMaster.html
http://www.hifi-remote.com/forums/viewtopic.php?t=13396
IrMaster.html
http://www.hifi-remote.com/forums/viewtopic.php?t=13655
http://www.harctoolbox.org
http://www.hifi-remote.com/forums/dload.php?action=file&file_id=9980
http://www.globalcache.com
http://www.globalcache.com/products/gc-100/
http://www.globalcache.com/products/itach/models2/
http://www.irtrans.com
http://www.irtrans.com/en/shop/lan.php
http://www.irtrans.com/en/shop/lan.php
http://www.lirc.org
lirc_ccf.html

	Table of contents
	1 Revision history
	2 Introduction
	2.1 Background
	2.2 Copyright and License
	2.3 Privacy note

	3 Overview
	4 Installation
	4.1 General
	4.2 Properties
	4.3 Windows
	4.4 MacOSX
	4.5 Other systems (Linux etc)

	5 Concepts
	6 Analyzing a single IR Sequence or IR Signal
	7 Adding new export formats
	8 GUI Elements walk through
	8.1 The "Scrutinize signal" pane
	8.2 The "Scrutinize remote" pane
	8.3 The "Generate" pane
	8.3.1 Accessing a number of different parameter values

	8.4 The Import pane
	8.4.1 Global Caché Database
	8.4.2 The IRDB Database
	8.4.3 Girr (the native format of IrScrutinizer)
	8.4.4 LIRC
	8.4.5 RemoteMaster
	8.4.6 Pronto Classic (CCF format)
	8.4.7 Pronto Prof. (XCF format)
	8.4.8 ICT IrScope format
	8.4.9 Text format
	8.4.9.1 Raw
	8.4.9.2 Raw, line-based
	8.4.9.3 Parameterized

	8.4.10 Wave

	8.5 The Export pane
	8.5.1 The Girr sub-pane
	8.5.2 The Wave sub-pane
	8.5.3 The sendir sub-pane
	8.5.4 The Pronto Classic sub-pane

	8.6 The "Capturing HW" pane
	8.6.1 IrWidget
	8.6.2 Global Caché capture
	8.6.3 LIRC Mode2
	8.6.4 Arduino
	8.6.5 IrToy

	8.7 The "Sending HW" pane
	8.7.1 The "Global Caché" pane.
	8.7.2 The "LIRC" pane
	8.7.3 The "IRTrans" pane
	8.7.4 The "IrToy" Pane
	8.7.5 The "Arduino" Pane
	8.7.6 The "Audio" Pane
	8.7.7 The "General Serial Port" Pane

	9 Command line arguments
	10 Questions and Answers
	10.1 Does IrScrutinizer completely replaces IrMaster?
	10.2 How do I emulate the war dialer in IrScrutinizer?
	10.3 Can I use this program for conveniently controlling my favorite IR controlled device from the sofa?
	10.4 The pane interface sucks.
	10.5 I did something funny, and now the program does not startup, with no visible error messages.

	11 References

